Aims: Hyperglycaemia-induced reactive oxygen species (ROS) are key mediators of cardiac dysfunction. Intensive glycaemic control (IGC) has failed to reduce risk of heart failure in patients with diabetes but the underlying mechanisms remain to be elucidated. The present study investigates whether epigenetic regulation of the pro-oxidant adaptor p66Shccontributes to persistent myocardial dysfunction despite IGC. Methods and results: p66Shcexpression was increased in the heart of diabetic mice, and 3-week IGC by slow-release insulin implants did not revert this phenomenon. Sustained p66Shcupregulation was associated with oxidative stress, myocardial inflammation and left ventricular dysfunction, as assessed by conventional and 2D speckle-tracking echocardiography. In vivo gene silencing of p66Shc, performed during IGC, inhibited ROS production and restored cardiac function. Furthermore, we show that dysregulation of methyltransferase DNMT3b and deacetylase SIRT1 causes CpG demethylation and histone 3 acetylation on p66Shcpromoter, leading to persistent transcription of the adaptor. Altered DNMT3b/SIRT1 axis in the diabetic heart was explained by upregulation of miR-218 and miR-34a. Indeed, in human cardiomyocytes exposed to high glucose, inhibition of these miRNAs restored the expression of DNMT3b and SIRT1 and erased the adverse epigenetic signatures on p66Shcpromoter. Consistently, reprogramming miR-218 and miR-34a attenuated persistent p66Shcexpression and ROS generation. Conclusions: In diabetic left ventricular dysfunction, a complex epigenetic mechanism linking miRNAs and chromatin modifying enzymes drives persistent p66Shctranscription and ROS generation. Our results set the stage for pharmacological targeting of epigenetic networks to alleviate the clinical burden of diabetic cardiomyopathy.

Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66Shc / Costantino, Sarah; Paneni, Francesco; Mitchell, Katharyn; Mohammed, Shafeeq A.; Hussain, Shafaat; Gkolfos, Christos; Berrino, Liberato; Volpe, Massimo; Schwarzwald, Colin; Lüscher, Thomas Felix; Cosentino, Francesco. - In: INTERNATIONAL JOURNAL OF CARDIOLOGY. - ISSN 0167-5273. - 268:(2018), pp. 179-186. [10.1016/j.ijcard.2018.04.082]

Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66Shc

Paneni, Francesco;Volpe, Massimo;Cosentino, Francesco
2018

Abstract

Aims: Hyperglycaemia-induced reactive oxygen species (ROS) are key mediators of cardiac dysfunction. Intensive glycaemic control (IGC) has failed to reduce risk of heart failure in patients with diabetes but the underlying mechanisms remain to be elucidated. The present study investigates whether epigenetic regulation of the pro-oxidant adaptor p66Shccontributes to persistent myocardial dysfunction despite IGC. Methods and results: p66Shcexpression was increased in the heart of diabetic mice, and 3-week IGC by slow-release insulin implants did not revert this phenomenon. Sustained p66Shcupregulation was associated with oxidative stress, myocardial inflammation and left ventricular dysfunction, as assessed by conventional and 2D speckle-tracking echocardiography. In vivo gene silencing of p66Shc, performed during IGC, inhibited ROS production and restored cardiac function. Furthermore, we show that dysregulation of methyltransferase DNMT3b and deacetylase SIRT1 causes CpG demethylation and histone 3 acetylation on p66Shcpromoter, leading to persistent transcription of the adaptor. Altered DNMT3b/SIRT1 axis in the diabetic heart was explained by upregulation of miR-218 and miR-34a. Indeed, in human cardiomyocytes exposed to high glucose, inhibition of these miRNAs restored the expression of DNMT3b and SIRT1 and erased the adverse epigenetic signatures on p66Shcpromoter. Consistently, reprogramming miR-218 and miR-34a attenuated persistent p66Shcexpression and ROS generation. Conclusions: In diabetic left ventricular dysfunction, a complex epigenetic mechanism linking miRNAs and chromatin modifying enzymes drives persistent p66Shctranscription and ROS generation. Our results set the stage for pharmacological targeting of epigenetic networks to alleviate the clinical burden of diabetic cardiomyopathy.
2018
Diabetic cardiomyopathy; epigenetics; miR-218; miR-34a; miRNAs; oxidative stress; cardiology and cardiovascular medicine
01 Pubblicazione su rivista::01a Articolo in rivista
Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66Shc / Costantino, Sarah; Paneni, Francesco; Mitchell, Katharyn; Mohammed, Shafeeq A.; Hussain, Shafaat; Gkolfos, Christos; Berrino, Liberato; Volpe, Massimo; Schwarzwald, Colin; Lüscher, Thomas Felix; Cosentino, Francesco. - In: INTERNATIONAL JOURNAL OF CARDIOLOGY. - ISSN 0167-5273. - 268:(2018), pp. 179-186. [10.1016/j.ijcard.2018.04.082]
File allegati a questo prodotto
File Dimensione Formato  
Costantino_Hyperglycaemia_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1136886
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 39
social impact